Carbon black
For the climate forcing agent, see Black carbon.
Carbon black (subtypes are acetylene black, channel black, furnace black, lamp black and thermal black) is a material produced by the incomplete combustion of heavypetroleum products such as FCC tar, coal tar, ethylene cracking tar, and a small amount from vegetable oil. Carbon black is a form of paracrystalline carbon that has a high surface-area-to-volume ratio, albeit lower than that of activated carbon. It is dissimilar to soot in its much higher surface-area-to-volume ratio and significantly lower (negligible and non-bioavailable) PAH (polycyclic aromatic hydrocarbon) content. However, carbon black is widely used as a model compound for diesel soot for diesel oxidation experiments.Carbon black is mainly used as a reinforcing filler in tires and other rubber products. In plastics, paints, and inks carbon black is used as a color pigment.
The current International Agency for Research on Cancer (IARC) evaluation is that, "Carbon black is possibly carcinogenic to humans (Group 2B)". Short-term exposure to high concentrations of carbon black dust may produce discomfort to the upper respiratory tract, through mechanical irritation.
Common uses
Total production was around 8,100,000 metric tons (8,900,000 short tons) in 2006. The most common use (70%) of carbon black is as a pigment and reinforcing phase in automobile tires. Carbon black also helps conduct heat away from the tread and belt area of the tire, reducing thermal damage and increasing tire life. Carbon black particles are also employed in some radar absorbent materials and in photocopier and laser printer toner, and other inks and paints. The high tinting strength and stability of carbon black has also provided use in coloring of resins and films. About 20% of world production goes into belts, hoses, and other non-tire rubber goods. The balance is mainly used as a pigment in inks, coatings and plastics. For example, it is added to polypropylene because it absorbs ultraviolet radiation, which otherwise causes the material to degrade.
Carbon black from vegetable origin is used as a food coloring, in Europe known as additive E152. It is approved for use as additive 153(Carbon blacks or Vegetable carbon) in Australia and New Zealand£¬ but has been banned in the USA.
Carbon black has been used in various applications for electronics. As a good conductor of electricity, carbon black is used as a filler mixed in plastics, elastomer, films, adhesives, and paints. Application of carbon black as an antistatic agent has provided uses as an additive for fuel caps and pipes for automobiles.
Additionally, the colour pigment Carbon Black has been widely used in food and beverage packaging around the world for many years. You can find it used in multi-layer UHT milk bottles in the US, parts of Europe and Asia, and South Africa, and in items like microwavable meal trays and meat trays in New Zealand.
Within Australasia the safe use of the colour pigment Carbon Black in packaging must comply with the requirements of either the EU or US packaging regulations and if any colourant is used it must meet European partial agreement AP(89)1.
The Canadian Government’s assessment (an extensive review of Carbon Black) in 2011 concluded that Carbon Black should continue to be used in products – including food packaging for consumers – in Canada. This was because “in most consumer products carbon black is bound in a matrix and unavailable for exposure, for example as a pigment in plastics and rubbers” and “it is proposed that Carbon Black is not entering the environment in a quantity or concentrations or under conditions that constitute or may constitute a danger in Canada to human life or health.”
There are strict guidelines available and in place to ensure employees who manufacture Carbon Black are not in a working environment where they are at risk of inhaling unsafe doses of Carbon Black in its raw form.
Pigment
Carbon black (Colour Index International, PBK-7) is the name of a common black pigment, traditionally produced from charring organic materials such as wood or bone. It appears black because it reflects very little light in the visible part of the spectrum, with an albedo near zero. The actual albedo varies depending on the source material and method of production. It is known by a variety of names, each of which reflects a traditional method for producing carbon black:
Ivory black was traditionally produced by charring ivory or bones (see bone char).
Vine black was traditionally produced by charring desiccated grape vines and stems.
Lamp black was traditionally produced by collecting soot, also known as lampblack, from oil lamps.
Newer methods of producing carbon black have superseded these traditional sources, although some materials are still produced using traditional methods. For artisanal purposes, carbon black produced by any means remains a commonly used item.
Surface chemistry
All carbon blacks have chemisorbed oxygen complexes (i.e., carboxylic, quinonic, lactonic, phenolic groups and others) on their surfaces to varying degrees depending on the conditions of manufacture. These surface oxygen groups are collectively referred to as volatile content. It is also known to be a non-conductive material due to its volatile content.
The coatings and inks industries prefer grades of carbon black that are acid oxidized. Acid is sprayed in high temperature dryers during the manufacturing process to change the inherent surface chemistry of the black. The amount of chemically-bonded oxygen on the surface area of the black is increased to enhance performance characteristics.